Fgfr3 expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains.
نویسندگان
چکیده
The postnatal central nervous system (CNS) contains many scattered cells that express fibroblast growth factor receptor 3 transcripts (Fgfr3). They first appear in the ventricular zone (VZ) of the embryonic spinal cord in mid-gestation and then distribute into both grey and white matter - suggesting that they are glial cells, not neurones. The Fgfr3(+) cells are interspersed with but distinct from platelet-derived growth factor receptor alpha (Pdgfra)-positive oligodendrocyte progenitors. This fits with the observation that Fgfr3 expression is preferentially excluded from the pMN domain of the ventral VZ where Pdgfra(+) oligodendrocyte progenitors--and motoneurones--originate. Many glial fibrillary acidic protein (Gfap)- positive astrocytes co-express Fgfr3 in vitro and in vivo. Fgfr3(+) cells within and outside the VZ also express the astroglial marker glutamine synthetase (Glns). We conclude that (1) Fgfr3 marks astrocytes and their neuroepithelial precursors in the developing CNS and (2) astrocytes and oligodendrocytes originate in complementary domains of the VZ. Production of astrocytes from cultured neuroepithelial cells is hedgehog independent, whereas oligodendrocyte development requires hedgehog signalling, adding further support to the idea that astrocytes and oligodendrocytes can develop independently. In addition, we found that mice with a targeted deletion in the Fgfr3 locus strongly upregulate Gfap in grey matter (protoplasmic) astrocytes, implying that signalling through Fgfr3 normally represses Gfap expression in vivo.
منابع مشابه
A Study on Transdifferentiation of Bone Marrow Stromal Cells into Neuronal and Glial-Like Cells In Vitro by Different Inducers
Introduction: There are some evidences to suggest that bone marrow stromal cells (BMSCs) not only differentiate into mesodermal cells, but also adopt the fate of endodermal and ectodermal cell types. BMSCs can be a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system. Bone marrow stromal cells can be expanded rapidly in vitro and can...
متن کاملEvidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord.
The neuroepithelial cells of the mammalian neural tube are thought to give rise to all classes of differentiated neurons and macroglial cells in the adult CNS. In most cases, the regulation and timing of commitment of neuroepithelial cells to specific differentiative pathways are unknown. It has been proposed that in developing spinal cord, the macroglial cells--astrocytes and oligodendrocytes-...
متن کاملMultiple restricted origin of oligodendrocytes.
The plp gene encodes the proteolipid protein and its alternatively spliced product DM-20, major proteins of CNS myelin. In the mouse, plp/dm-20 transcripts are expressed beginning at embryonic day 9.5 (E9.5) by restricted foci of germinative neuroepithelial cells. To determine the identity of the neural precursors expressing plp/dm- 20, a zeomycin resistance gene fused to the lacZ reporter was ...
متن کاملThe Role of Wnt Signaling Pathway on the Expression of TGFβ 1 and TGFβ 2 in Cultured Rat Cortical Astrocytes
Introduction: Astrocytes, the most abundant glia in the central nervous system, modulate neuronal survival and function. Astrocytic functions are mediated by synthesis and secretion of wide ranges of polypeptides through mechanism (s) poorly understood. Among these, TGFβs are synthesized and released by the astrocytes. In this study, the involvement of Wnt signaling pathway on the synthesi...
متن کاملCD44 expression identifies astrocyte-restricted precursor cells.
The precise lineage between neural stem cells and mature astrocytes remains poorly defined. To examine astrocyte development, we have characterized glial precursors from neural tissue derived from early embryonic ages. We show that CD44 identifies an astrocyte-restricted precursor cell (ARP) that is committed to generating astrocytes in vitro and in vivo in both rodent and human tissue. CD44+ c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 130 1 شماره
صفحات -
تاریخ انتشار 2003